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Today I wish to discuss two topics of central interest in hadron 

dynamics. The first is diffraction scattering and the view we have of 

the Pomeranchuk or vacuum singularity in the complex angular momentum 

plane. The study of inclusive reactions and the ability to discuss, 

theoretically at least, Reggeon-particle amplitudes has provided a 

number of rather strong constraints on the structure that the Pomeron 

may have. In brief we learn that unitarity in the t-channel forbids the 

vacuum singularity from being an isolated simple pole with cu(O) = 1 and 

finite slope at t = 0. This nice uncomplicated picture is one we relinquish 

with reluctance, but since we must, sorting out the correct solution 

from among the myriads of complicated alternatives now becomes 

imperative. 

The second topic I will bring here today concerns the attempts to 

find a space-time description of a spatially extended or composite 

hadron. This has been carried out in the context of dual resonance 

models for two reasons: (1) to build a composite hadron with the mass 

spectrum of dual models (linearly rising Regge trajectories) is a 

tantalizing beginning point for any hadron theory, (2) it is a natural 

development in the attempt to formulate a ghost-free version of dual 

models. A few word description of the status of such theories is that, 

as far as physics goes, they are, until now, failures. Only in the 

extraordinarily unphysical world of one time and twenty-five space 

dimensions along with at least one state of negative mass squared is 



-2- 17-THY 

one able to give a space-time picture of a hadron with the dual, harmonic 

oscillator, spectrum. In reviewing these failures, brilliant failures 

I hasten to add, we learn a great deal on how one might salvage the 

ideas and bring them into the world we happen to live in. 

I. Constraints on Diffraction Phenomena 

The observation of nearly constant total cross sections for hadronic 

collisions long ago focused attention on the structure of partial wave 

amplitudes in the vicinity of angular nn mentum p = 1 and momentum 

transfer : t = 0. The particular partial wave amplitude we want to 

consider is the positive signature amplitude F(1 ,t) which is gotten from 

the absorptive part A(s, t) of a spinless two-to-two amplitude by a 

Mellin transform, 

i 

(JQ 
F ii,i:! = C[A A-‘-’ // (a,$), (1) 

which is a form of the usual Froissart-Gribov formula accurate to 

leading order in energy s. 

The data from plab = 30 GeV/c up to p 
lab 

= 1500 GeV/c on proton- 

proton collisions reveals a remarkably constant total cross section 

o,(s), certainly any variation is only of a log s or (log s)’ nature. 

If oT(s) - const. for large s, then since the optical theorem relates 

UT(s) and A(s,t = 0) by 
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cJIT (,d) = ‘/,a A id, t = 01 ) (2) 

toO(i/s), we would conclude that F(1, t = 0) has a simple pole at p = 1. 

This “Pomeron” object enters in any channel with vacuum quantum 

numbers and is by assumption the appropriate description of s-indepen- 

dent behavior of cross sections. The actual evidence on constancy of 

total cross sections, which I presume will be reviewed by Dr. Sens 

this afternoon, is very much up in the air. Three experiments have 

been done at the highest CERN-Intersecting Storage Ring energies. 

One yields constant oT; two, rising cross sections by powers of (log s)! 

The determination of these cross sections involves measuring the elastic 

differential cross section, estimating the ratio of real to imaginary 

parts of T elastic(s, t) and extrapolating back to t = 0 where (2) is used 

to extract sT(s). This is, at best, a procedure which can be very 

sensitive to systematic mistakes and although 
3- 

may indeed rise in s, 

the honest skeptic must suspend his judgement or do his own experiment. 

By the way, while waiting about for the experimental dust to settle 

it is useful to remember that in the ISR experiments the slope parameter 

b(s) defined by 
blaV 

(31 

is a very precisely determined quantity and remembering that 0 el(s) 5 

r+(s) the optical theorem provides us with the inequality’ 
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o&l) f lbn 13(i).. (4) 

It will be recalled that b(s) at most rises linearly in log s and, indeed, 

turns over and becomes rather s independent at ISR energies. OT(S) 

cannot rise forever unless b(s) starts up too. 

Actually since b(s) = lZ/(GeV)’ the bound (4) is not remarkably 

useful since 16rr is a big number. Some improvement can be made by 

noting that Tel(s, t) is known to have a very small real part and that 

1 
0 

el = sOT 
at ISR or NAL energies. This yields 

ol; C.&B) G LjBlvn (GeV)-‘]4mb, 

a relation which should be quite,accurate since Re Tel/M Tel 

< 0. 1 and is clearly on the verge of being violated unless b(s) starts 

growing. 

Whatever the detailed behavior of oT(s) it appears it is going to differ 

from a constant by some log s factors only and it makes sense to see 

whether a simple pole in P at cu(O) = 1 which would give a strictly constant 

OT 
can be an intelligent starting point.for discussion of the detailed 

I-plane structure in the vicinity of 1 = 1. 

In inclusive reactions near the edge of phase space ( 1 x 1 = 1 or 

1 y ) = log s 1 one observes a very striking leading particle effect. That 

is taking pp collisions as our universal example, in each hemisphere of 

the center of mass one observes a very fast proton. Let’s concentrate 
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on such events and recall how one describes them in l-plane language. 

The inclusive cross section do(pp -p + x) depends onthree variables 

which we’ll choose to be s, the momentum transfer t between the observed 

fast proton and the incident proton moving in the same direction, and 

M2 the mass squared of x the unobserved stuff. As s becomes large 

with t and Mz held finite, our presumed Pomeron exchange ought to 

govern the s behavior as’ 

24lt I 

2 do/d+ cl Md ,- A) 
&->oo 

! 7s) (6) 

t,ma Tlx,d 

where )3(t) is the two-proton-Pomeron coupling which appears in 

elastic scattering and F(t, M’) describes the absorption of a “Pomeron 

beam” of mass squared equal -t on a proton at energy M2, 

There is an experimental way to examine whether this boldness of 

thinking of F(t, M2) as a Pomeron-proton absorption makes any sense. 

Namely, look simultaneously at one of the particles in the x (so do a 

two arm experiment), then one is doing single particle inclusive 

experiment on Pomeron + proton + detected hadron + x. If the Pomeron 

is acting like one of the hadrons we ordinarily induce inclusive reactions 

with, the distribution in rapidity (or x) and pT of the detected hadron 

ought to be pretty much the same as in ordinary inclusive experiments 

with M2 playing precisely the usual role of s. Unusually ~preliminary 

data from the CERN-ISR3 in fact shows that Pomeron beams do produce 
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single particle distributions essentially like what we have so often seen 

at accelerator energies. That’s nice to know and bolsters our resolve 

to continue, 

If we take this Pomeron exchange formula, (6), and consider it 

for large M2, but still M2 << s and t finite, then one more Pomeron 

exchange may be expected to be governing the behavior. We now encounter 

the coupling of three Pomerons g,(t) in the regime just described 

Aado- rR/&,/ya = I,i;6TF'o) (+a~d'f'(~2~'o'~c it), c7) 

where the subscript TR is for triple-Reggeon. The integral of this 

cross section is proportional to the cross section c TR(~) for this piece 

of phase space times the multiplicity of fast enough protons in the same 

piece of phase space. The latter is finite by our choice of cross sections. 

This uTR(s) gives a contribution to F(P, t = 0) of the form 

FTR (i,t=o) = -.!- 
/e-d (0) 

(8) 

If Q(t) = 1 + a’t, the simplest possibility, then 

FTR (0 =d - iJ& J- h (Jg), 
l-1 9 

(9) 

but we began by assuming that the analytic structure of F(1, t =O) was 

just a simple pole l/J! -1. Other contributions to F(P, t-0) cannot cancel 

(9) since A(s, o) z 0, so we must eliminate this singularity for consistency. 
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The only way to do that is to have g,(O) = 0. 

Making gp(Oi = 0 seems harmless enough in itself, but inquiring 

into how g (0) is built up out of the contributions to the missing mass 
P 

M 
2 

reveals that a large number of other Pomeron couplings must vanish. 4 

To see this consider the inclusive process Pomeron + proton - hadron 

of momentum ph + anything. Energy momentum conservation relates 

the integral of this cross section weighted by Eh to the Pomeron proton 

cross section we have called F(M’, t 1, see Fig. 3 

dJg _Fh dri?m+~+K\+X) 
EPt. 

3 
d3h /Eh 

fl Fit,rw+ (10) 

Since the leading contribution in M2 to F(t, M2) must vanish at t = 0, so 

must the equivalent quantity on the left hand side of (10). Utilizing 

then the positivity of an inclusive cross section, we learn that the “vertex 

function” for three zero mass Pomerons and any hadron h must vanish. 

That is, every contribution from individual hadron states to gp(0) must 

itself vanish if g (0) is to be zero. (see Fig. 5). 
P In pl rticular that 

piece of this complicated vertex function which involves a Reggeon 

with the quantum numbers of the hadron h coupling to h and the Pomeron 

at t = 0 must vanish. 

Now comes the clincher. 
5 

Once one has the Pomeron (t = 0) - 

Reggeon(t) - particle vertex (Fig. 7) vanishing, it is a short step to 

continue t to M 
2 
h 

and conclude that the Pomeron it = 0) - two particle 
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vertex also must vanish. This demonstration requires knowledge of the 

analyticity in t of the two Reggeon-particle vertex, but arguing from 

analyticity found in a variety of models, Brewer and Weis, 5 
conclude 

that the continuation in t from t < 0 to t = ML can be made in such a way 

as to preserve uniformity in interchanging the two limits tpomeron + 0, 

t, 
Reggeon 

- D/I;. So one is left holding a bag of contradictions: assuming 

that the Pomeron with 40) = 1 sets the scale, p(O), of constant total 

cross sections, we learn that p(O) must be zero and that the whole 

construction is inconsistent. 

This result has set armies of function inventors out to seek ways 

around the analytic continuations necessary to prove the last step in 

the argument. Unfortunately the physical defense of these vertes 

functions with reduced analysticity is very slim. 

I suspect that it is useful to look upon these decoupling theorems 

as a blessing rather than a curse. After all one of the basic assumptions 

made is that this Pomeron thing is a simple isolated pole at t = 0, 4 = 1. 

But we have known for ten years since the work of Mandelstam and Amati, 

et al. 
6 

that moving poles in the angular momentum plane necessarily 

produce branch points in 1 via unitarity in the t-channel. These branch 

points coincide with the pole position at t = 0 and lead one to wonder why 

he started down the primrose path of a simple pole at t = 0 anyway. 

The decoupling results then must serve to refocus our attention on the 

way in which branch cuts and poles must interact to produce a self- 
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consistent l-plane structure. It is very possible that the resulting 

structure will bear so little resemblance to the pole we have been 

offering ourselves as the Pomeron that wonderment at our naivetg 

will be in order. 

That the latter reaction could be appropriate is suggested by several 

self-consistent models of diffraction studied by Zachariasen and Ball7 

and by Sugar8 and collaborators. These models typically end up 

saturating the Froissart bound o 
T 

- (log s12 or at least have uT - log s. 

Often they have the elastic slope parameter b(s 1 growing as (log s)~ as 

well. But the feature of importance for the minute is that the structure 

F(1, t) near 1 = 1 and t = 0 is some complicated cut with no trace of a 

pole a(t) = 1 + Q’t in sight. Of course, at this stage these models are 

not compelling but becoming increasingly attractive. 

Finally it may be that the P-plane description of diffraction is 

simply so complicated as to be dull and totally misleading. There are 

among our colleagues many who argue that diffraction is a reflection of 

inelastic processes feeding back into A(s) t I via unitarity and that only 

an understanding of the s-channel production amplitudes will reveal 

the underlying simplicity of diffraction and that the Mellin transform (4) 

of that simplicity will be unspeakably ugly. Somewhere in between is 

the germ of an answer; at the moment both the s and the t channel 

advocates are muddling in the same quagmire of a very important 

problem. 
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II Hadrons as Dual Strings 

\~e now switch gears onto a subject of somewhat less direct 

experimental import butt which is a fascinating theoretical challenge. 

The origin of the subject is found in the operator forumation of multi- 

particle dual theories. Several good reviews of the subject are 

available, 
9 so I’ll turn my attention only to the salient facts. 

The dual model can be formulated in a space-time like picture where 

one has a “position” four vector QV,( T ) and a “momentum” four vector 

P@(T) which are represented by their fourier expansions 

Q (~1 =X r r -+ad+t +i$GTL,- T ’ ia@-“““- aexp P), (ii) 
n=J n 

lp, = i d_i; = % + 
;?d’ d-r: & $/ (Ll, c.- Lnr+ 61-,f F)) (*2) 

where Xi-, and Pw are the “center of mass” co-ordinates satisfying 

Ix,, VI = - “j/AL’ 

(Y’ is the universal Regge slope, and the operators a m 
satisfy 

(13) 
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The parameter T is like a time in which the harmonic oscillator modes 

anh: 7 ) evolve. Translations in T are generated by the “Hamiltonian” 

= d’ I$! + 2 a+ u[ ~ 
?-I=1 “P 

(46) 

All the conventional dual amplitudes can be expressed in terms of the 

operators a 
w 

and external momenta. The usual dual “propagators” is 

naturally enough given by 

J ji(+qo -& > (47) 

The question which has been raised and extensively studied of late 
10 

is whether or not one may actually think of Q~. as a position vector for 

the hadron or its constituents as observed in real space-time. The 

spectrum generated by Lo is that of a center-of-mass energy a’P 
2 

P 

plus an infinite number of oscillations in internal normal modes. 

The fact that this is in one-to-one correspondence with the excitation 

spectrum of a one-dimensional uniform string has led to the idea that 

one may view a hadron as a one dimensional string with every point on 

the string having a four vector displacement Qp(u, 7) associated with 

it where CJ in some way labels the “position” along the string and 7 

describes the time development. 
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If Q (0, 7) satisfies the wave equation 
II 

(; 
aa _ s-2 -j-r2 <z$ ;: Q$ iq -c) = 0 /’ 

(18) 

then the normal mode expansion (11) represents the displacement vector 

at some specified o. 

The spectrum of Lo is, however, too rich because it contains states 

with the wrong sign of norm if there are no constraints to remove the 

excitations created by the time oscillators ano. Such constrains were 

discovered several years ago, 
11 

and have been shown within the last 

year to eliminate all the ghosts in known dual models. 
12 

These ‘papers 

show that in the four dimensional world we live in when the intercept of 

the leading Regge trajectory in the theory is < 1, there are no wrong 

norm states. Further, the physical states have same spectrum as 

that given by the spatial oscillators alone. 
12 

What has now been attempted is to try to find a lagrangian for the 

string which will ensure the appropriate constraints and explicitly 

afford the space-time interpretation of QII(a , T 1. Such a lagrangian 

was proposed several years ago by Nambu. 
13 

He observed that viewed 

in o and T the string swept out a two dimensional sheet (Fig. 8). He 

suggested that a natural choice for the action of the string be something 

proportional to the area of this sheet. This yields for the action for 

motion from 7i to T 
f 
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AZ -_I_ 
a;ruc, p $LT (2 a$)? fqJ&Jj “2 (19) 

Ti 3 

where a conventional constant is put in front and the parameter e 

labeling the position on the string has been chosen to lie between 0 and 

1. 

This action is invariant under parametrization of o and 7; that is - 

the action is unchanged when 

(20) 

and (7.1) 
-c -3 

This invariance can be shown to explicitly yield the “gauge conditions” 

which are needed to eliminate the ghosts in dual theories. 
14 

However we can see without lengthy computation that this action 

has too much invariance. Because we are free to choose Dand T at 

will, only two of the four degrees of freedom in Q.~(u, T) are independent. 
I-I 

This means that the first excited state created by the internal oscillations 

of the string, which arises by the application of one a 
+ 

to the vacuum 
w 

will have only two independent modes of oscillation. This can only 

come about if it has spin I/ 2 or is massless. We must reject spin 112 

on physical grounds since we can only be dealing with internal orbital 

angular momentum out of which spin 1/ 2 cannot come if the angular 
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momentum operator is to be hermitean. If the first excited state is 

massless and has the lowest spin it can have, namely spin 1, then the 

intercept of the leading trajectory must be 1 and the ground state must 

be spacelike. There is even a more subtle complication, namely even 

if we accept this tachyon as a little burden to be considered “later”, 

the quantization schemes 
10 

which utilize explicitly the invariance (20) 

and (2i) to eliminate ghost co-ordinates and are thus not explicitly co- 

variant do not become covariant except in a world of one time and twenty- 

five space dimensions. The inability of a geometric theory (orbital 

angular momentum) to produce spin l/2 can again be seen to be respon- 

sible, for if spin 1/ 2 could be tolerated one can alter the Lorentz 

generators to have the correct commutation relations in four dimensional 

space-time and have no ghosts or tachyons. 

What is clearly needed is an action which breaks the joint invariance 

under both 0 and T parametrizations. This broken symmetry ought to 

retain one parameter invariance so that out of the four Q,.(u, T) one can 

be eliminated by parameter choice leaving the remaining three indepen- 

dent variables to generate the spectrum. We can get a hint as to what 

to do by looking at a set of non-interacting point particles with masses 

The action is 

(22) 
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This action is clearly invariant under choice of the parameter T: 

z -=? 
(23) 

So from each QiP(~ ) we can eliminate one component and be left with 

the three degrees of freedom we expect for free point particles. If 

we imagine that the string is just an infinite number of these point 

particles which are interacting and the label i goes over into 0 to 

identify which particle we are speaking of, then to retain contact with 

the non-interacting case in the limit of string’s coupling goes to zero, 

we want to retain the independence under 7 and are willing to sacrifice 

the o independence. 

Indeed, this gives one another degree of freedom and brings one 

closer to the three dimensional internal oscillator which will generate 

the dual spectrum. However, exactly how to alter the action (19) to 

break the D invariance is not well defined. One can reason heuristically 

in analogy with the electromagnetic field action 

(24) 

This is not only gauge invariant under A’(z) - A’(z) + 8 ‘A(z ) but 

possesses a higher conformal symmetry. We also know that this 

action describes a massless field and only two of the components of 

A P(z) are independent variables. We can break this additional symmetry 

by adding a mass term to the action and still retain the gauge invariance 
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of the theory by the Stiikelberg trick of introducing a scalar boson field 

B(z). The Lagrangian 

&., = -$ (+A~&)~- ay A/i it))' 

+ (A/L@ -;13/ Hz))’ j 
(25) 

is invariant under 

A,&) + ,4Jzj t- 2~ fib) (26) 

and Dlz) -2 B[t) -k+ A(-& (27) 

and describes a massive particle whose field Air(z) has three independent 

components. 

The suggestion of this example is that to the action (19) somehow 

corresponds to the continuum generalization of a bunch of massless 

particles interacting. If the interacting particles had mass then before 

and (I presume) after they were allowed to interact, three degrees of 

freedom would be retained at each (3 for every 7. It would be most 

striking if I could end this exposition with an action which broke o 

invariance and gave a three dimensional harmonic oscillator spectrum 

and has no ghosts and avoids the subtlety of needing 25 space dimensions 

in which to be covariant, etc., but I cannot. 

Not to leave the reader entirely disappointed I offer up the following 

guess for his or her entertainment. It has broken 0 -invariance and thus 

three degrees of freedom at each CT and 7 and reduces to the action for 
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a free point mass when the extent of the string in D shrinks to zero 

A = - \;l: \q (a3 $?!Ja+ ~myw&p)yp!8) 
Li 0 

Clearly it is invariant under T parametrizations and when $+ 0 

becomes (22) for a point mass. Its other virtues (and faults) and its 

acceptability as an action for dual theories, I leave as homework for 

the diligent reader. 

I would like to thank M. B. Einhorn for lengthy discussions on the 

two subject considered here. 
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FIGURE CAPTIONS 

Figure 1: The inclusive differential cross section for pp - p + x with 

Pomeron exchange. The function F(t, M2) is the cross section for 

absorption of a Pomeron “beam” of mass squared -t on a proton 

2 
at center of mass energy M . 

Figure 2: The large M2 behavior of F(t, M2) revealing the triple Pomeron 

coupling g,(t 1. 

Figure 3: The connection via energy momentum conservation between 

Pomeron + proton + hadron + anything and Pomeron + proton - 

anything. 

Figure 4: The large M2 behaviour of the energy momentum conservation 

relation shown in Figure 3. 

Figure 5: Vanishing of gp(0) requires the terms in the integral of 

Figure 4 to vanish. This is shown here. 

Figure 6: One contribution to Figure 5 which exhibits the Pomeron- 

Reggeon-particle coupling. This coupling is forced to vanish. 

Figure 7: If the Pomeron (t=O) - Reggeonlt) - particle coupling vanishes 

for all t < 0, then analyticity arguments can be used to show that 

the Pomeron (t-0) - two particle coupling, which sets the scale for 

total cross sections must vanish. 

Figure 8: The two dimensional surface swept out by the dual string 

which is extended in the o parameter and develops in the “time” 
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variable 7. At each point on the surface one would like to associate 

a real space-time displacement vector Qk(o, T 1. 
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